
Reprinted tram 

"VISTAS IN ASTRONOMY" 
(ED. ARTHUR BEER), Vol. 10, pages 89-103 

PERGAMON PRESS' OXFORD & NEW YORK· 1968 

On the Planetary Theory of Copernicus 

O. NEUGEBAUER 

Brown University, Providence, R.I., and 
Institute for Advanced Study, Princeton, N. J., U.S.A. 

IN MEMORY OF ROBERT OPPENHEIMER 

In 1958 A. Koyre spoke about" l'abandon de l'equant, ce haut titre de gloire de l'astrono
mie copernicienne", adding that in the lunar theory" Copernic reussit la simplification la 
plus grande en la debarassant de l'equant (ce qui nous donne la mesure de son genie mathe
matique)." 1 

About three 'and a half centuries earlier, Vieta held a different opinion when he said: 2 

"ptolemy and Copernicus, who is always paraphrasing him, did not show themselves as 
good geometers at the determination of the apsides, the eccentricities, and the epicycle 
radii from 3 mean and 3 true positions; they assumed the problem settled and therefore 
solved it in an unfortunate fashion. 3 And Copernicus not only admits his unprofessional 
way but shows it in Chapter IX of Book III of De Revolutionibus, where he tries to deter
mine the maximum equation of the equinoxes from observations of Timocharis, ptolemy, 
and al-Battani as well as the epochs of the anomaly from the limit of the slowing down. 4 

More a master of the dice than of the (mathematical) profession he asks to rotate the circle 
until the error which admittedly comes from his ungeometrical procedure might, with 
good luck, be compensated." 

Both pronouncements are quite characteristic of their times: on the one hand, the ever 
increasing modern tendency toward hero worship on the basis of "ideas" and disrespect 
for technicalities; on the other hand, the aggressiveness of Renaissance scholarship, which 
did not hesitate to point out weaknesses wherever they could be found. But the reader will 
notice that neither one of the above-mentioned statements is concerned with the alternative 
geocentric versus heliocentric universe but with the mathematical achievements and abilities 
of Copernicus. It is only this latter aspect which is the theme of the present paper. 

I am aware of the fact that much of the following is not new, at least not to the small 
group of scholars who during the past decade have uncovered the Islamic antecedents of 
the Copernican methods 6 nor to those who are familiar with the technical procedures of 

1 In Taton, Histoire generale des sciences, vol. ii, p. 64. 
2 In his" Apollonius Gallus" (Paris 1600), Opera math., p. 343; also in Kepler, Werke vol. iii, p. 464 

(ad p. 156, 11). 
3 Of. below, p. 102, referring to an iteration method of approximations. 
• Of. below, p. 96. 
6 Of. V. Roberts, The solar and lunar theory of Ibn ash-Shatir, a pre-Copernican Copernican model, 

Isis vol. 48 (1957), pp. 428-32; E. S. Kennedy and V. Roberts, The planetary theory of Ibn al-Shatir, 
Isis vol. 50 (1959), pp. 227-35; Fuad Abbud, The planetary theory of Ibn al-Shatir: reduction of the 
geometric models to numerical tables, Isis vol. 53 (1962), pp. 492-9. 
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90 On the Planetary Theory of Copernicus 

the Almagest which were so consistently paraphrased by Copernicus. 1 Nevertheless it 
BeemB to me useful to present some of the most central technical features of the Copernican 
theory of planetary motion and to look at their relation to the Almagest not from the 
viewpoint of philosophical principles but of elementary mathematics. The basic identity 
of the Copernican methods with the Islamic ones needs no special emphasis in each indivi
dual case. The mathematical logic of these methods is such that the purely historical prob
lem of contact or transmission, as opposed to independent discovery, becomes a rather 
minor one. As I said before, all this could (or rather should) be well known. That in fact it 
is not needs no documentation. 

1. Let me first make clear the technical basis on which we operate, a basis common to the 
planetary theory in the Almagest (about A.D. 150) and in the De Revolutionibus. 

A practical sinlplification consists in the separation of the theory of longitudes from the 
consideration of latitudes by ignoring at first all orbital inclinations. Only after the longi
tudes are known were latitudes determined by tilting the respective planes into their 
proper positions. We shall discuss this latter part of the theory only in passing. 2 We will 
also not go into great detail about the theory of the Sun (including precession) and of the 
Moon. 3 

To simplify our presentation we speak about a "planet" when we mean the three outer 
planets and Venus. In this way we need not mention in every case the modifications which 
are required for the peculiar theory of Mercury; we shall deal with it more conveniently 
at the end (p. 98). 

Finally I remind the reader that before Tycho Brahe a theory was considered adequate 
when its results agreed with observations within about 10 minutes of arc. In general we 
shall ignore here the problem of agreement of the ancient theories with the empirical facts 
as known to us and shall focus our attention almost exclusively on the relation between 
the mathematical methods of ptolemy and Copernicus. 

2. Let us for a moment assume that the orbit of a planet is strictly circular with respect 
to the Sun. Since it is our goal to predict the geocentric longitudes A. of a planet, it is con
venient to transform the Earth to be at rest. Then it is trivial that the geocentric orbit of 
Venus is epicyclic; it requires only the construction of one parallelogram to see that the 
same holds also for the outer planets. The observable tracks of the planets confirm this 
general cinematic picture. 

What is not obvious, however, and is a matter calling for much ingenuity and patient 
observation is the problem of determining the parameters of such a planetary model. The 
case of Venus should be the most simple: the radius r of the epicycle is directly obtainable 
from the maximum elongation (J of the planet from the (mean) Sun. 4 Assuming already the 
existence of a definite theory of solar motion which provides us for any given moment with 
the equation of center for the Sun, we know (J and hence r from r = R sin (J where R is 
normed by Ptolemy as 60, by Copernicus as 104, representing the radius of any planetary 

1 Cf., e.g., D. Price, Contra-Copernious: a oritical re-estimation of the mathematical theory of Ptolemy, 
Copernious, and Kepler. Critical Problems in the Hi8Wry 0/ Science, ed. M. Clagett, Madison, Univ. of 
Wisoonsin Press, 1959, pp. 197-218. 

a Cf. below, p. 103. 
S Cf. below, p. 96 and p. 100. 
4 The modem reader should be warned that the" mean Sun" of ancient terminology moves with mean 

velocity in the ecliptic. 
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O. NEUGEBAUER 91 

deferent. In the case of Venus it turned out that () is not constant but depends largely on 
the solar longitude. Since it is plausible to assume that rand R are constant-in consequence 
of the circularity of orbits that was adopted a priori--one must conclude that the observer 
o is located eccentrically with respect to the deferent of center M. Through a systematio 
sequence of observations of maximum elongations, Ptolemy and his immediate predecessor 
Theon determined the solar positions for which () appears as a maximum or as a minimum, 
hence locating the apsidal line and finding the amount of the eccentricity e = OM (in 
terms of R = 60). 

In the solar and lunar theory a simple eccenter (or a cinematically equivalent epicycle) 
seemed to suffice for the explanation of the inequality in the length of the seasons and of 
the intervals between lunar eclipses. But already Hipparchus (about three centuries earlier) 
had realized that this simple lunar model was defective in the quadratures though he was 
not able to bring order into the seemingly inconsistent empirical data. Here Ptolemy 
sucoeeded and established the laws which govern the inequality which is now known as 
" evection ". It is well known that he spoiled his discovery by a hopelessly inadequate oine
matic explanation. 1 But the interest paid to conditions in quadratures led to another 

A 

FIG. I. 

important discovery in planetary theory. Knowing for Venus the apsidalline, eccentricity 
and epicycle radius, one can easily predict the maximum elongation to be expected when 
the center C of the epicycle (or the mean Sun) is in quadrature to the apsidalline, assuming 
naively uniform rotation of C on the deferent, i.e. with respect to its center M. Ptolemy 
found, however, that the observed elongations require uniform rotation not about M but 
about a point E of the apsidalline located such that EM = MO = e. This point E is 
the famous equant (using a late mediaeval terminology), i.e. the point of the apsidal line 
from which the motion of C appears uniform (cf. Fig. 1).2 For the modern reader it is not 
surprising that this concept played a crucial role in Kepler's attempts to account for the 
motion of Mars. 

ptolemy adopted the same cinematic principle also for the outer planets, of course com
bined with the trivial condition that the radius CP must always be parallel to the direction 

as from the observer to the mean Sun. The eminently successful prediction of planetary 
positions computed on the basis of this model can rightly be considered as its justification, 
even if one had no longer such direct observations at one's disposal as in the case of 
Venus. 

1 For which of. below, p. 100. 
2 None of our figures is drawn to scale; in particular eccentricities are greatly exaggerated. 
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92 On the Planetary Theory of Copernicus 

3. Without, for the moment, entering upon the question how to determine the parameters 
e and r for an outer planet (we will have to come back to this later (p. 102)), we may anti
cipate the results concerning the epicycle radii. l 

As far as we know, Copernicus was the first clearly to understand that these radii are 
only different because the radii R of the deferents are all taken as unit. If one, however, uses 
the radius a of the Earth's (or Sun's) orbit as unit, then a = Rjr for an outer planet, and 
a = rj R for an inner planet, provides us with the heliocentric distance of each planet. In 
this way we can compare both systems: 

TABLE 1 

r AIm. Cop. mod. 

Satunl 6;30 6;32 6;17 
Jupiter 11;30 11;30 11 ;32 
Mars 39;30· 39;29 39;22 
Venus 43;10 43;10 43;24 
Mercury 22;30 22;35 23;14 

TABLE 2 

a Aim. Cop. mod. 

Saturn 9·231 9·175 9'539 
Jupiter 5·217 5·219 5·203 
Mars 1'519 1-520 1-524 
Venus 0·719 0·719 0·723 
Mercury 0·375 0·376 0·387 

Table 2 represents the main contribution of Copernicus to astronomy: it opened the way 
to the determination of the absolute dimensions of our planetary system. 

Surprisingly enough the problem of heliocentric distances is not at all emphasized by 
Copernicus. Of the numbers listed in Table 2 only the distance of Mars is explicitly men
tioned (in V, 19); for Saturn and Jupiter one has to compute the mean distance from the ex
treme vahle~. For Venus one finds only Ptolemy's value of r, and for Mercury one can 
compute a mean value r for the variable radius of the planet's orbit (cf. below, p. 99). A 
contemporary reader could scarcely get the impression that here lay the central core of the 
"Copernican System". 

4. We now come to "l'abandon de l'equant". For the Moon one gets into trouble because 
no equant in the proper sense exists in Ptolemy's model. The mean motion takes place 
with respect to the Earth, the removal of which might be difficult, even for Copernicus. 

As for the planets we shall now demonstrate that it was the goal of Copernicus' cine
matic arrangements to maintain the equant, by no means to eliminate it. 

For an outer planet Copernicus prescribes the following motion (cf. Fig. 2): the planet 
P moves on an epicycle of radius r' such that PC makes with CM the angle x when CM 
makes the same angle iC with the apsidalline (iC increases with the rate of the sidereal mean 
motion of the ~anet). The center M of the deferent has the eccentricity e1 with respect to 
the mean Sun S about which the observer 0 rotates on a circle of radius T. 

1 For sexagesimal numbers I use a semicolon to separate integers from fractions, a comma for the 
separation of sexagesimal digits. 

494 



o. NEUGEBAUER 93 

In order to relate this model to the Ptolemaic one, we transfer 0 to be at rest, using the 
familiar parallelogram construction, repeatedly applied by Copernicus and, of course, well 
known to all astronomers at least since Apollonius. Figure 3 shows in heavy solid lines the 
resulting structure, which differs from the Ptolemaic model only insofar as the planetary 
epicycle of radius r does not move with its center O2 on the deferent and as the equant 
seems to be missing. In fact, however, the rule for the motion of O2 is such that a point E 
on the apsidal line (cf. Fig. 4) at a distance r' from M' will always see O2 at an angle ~ 
from the apsidalline. Hence E is the equant for O2 • Since O2 is the center of the planet's 
epicycle the Copernican model would be identical with Ptolemy's if the path of O2 were a 
circle. 

A 

FIG. 2. 

A 

FIG. 3. 
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94 On the Planetary Theory of Copernicus 

Copernicus proves that this is not the case,l as is easy to see if one considers, e.g., the 
situation at quadrature. But he does his very best (without saying so) to make the orbit 
of CB agree as closely as possible with the Ptolemaic deferent. To this end one must obviously 
require that 

OE = e1 + r' .= 2e (1) 

where e is the Ptolemaic eccentricity OM = ME = e. Furthermore one will have exact 
agreement with ptolemy's deferent in the apsidalline if (of. Fig. 5) 

(R - r') + (e - r') = R 
i.e. if 

r' = ie (2) 

and hence, because of (1), 
(3) 

FIG. 4. 

- M 

o 

FIG. 5. 

1 Ostensibly in order to disprove an opinion of "the ancients". But in antiquity no such model was 
proposed and the only persons who would have been interested in this problem before Copernicus are 
the Muslinl astronomers who invented this model. Indeed one finds in a~.:ru~i (about A.D. 1270) the 
same proof as with Copernicus (ef. Tannery (below, p. 99 note 4). p. 351). 
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o. NEUGEBAUER 95 

The relations (2) and (3) are indeed the relations which Copernicus (as well as at-Tu!)l 
and ash-Shatir) prescribes in relation to Ptolemy's eccentricities. 

It is easy to see that this Copernican orbit of O2 is in quadratures only about e2/2R wider 
than Ptolemy's deferent. 1 The angular displacement of O2 as seen from 0 remains well 
below one minute for all planets. When Copernicus' recomputations of Ptolemaic longitudes 
occasionally result in differences of more than one minute, then the cause lies in the in
accuracy of the trigonometric procedures, not in the principle of the models. 

In the case of Venus, Copernicus assumes that S is the mean Sun (cf. Fig. 6), 0 1 at a 

distance e1 from S is the center of a circle of radius r' which carries the center O2 of the 

A 

FIG. 6. 

planet's orbit; all angles ~ increase proportional with time. Since S0102 = 2~ we see as 
before that E, at the observer's apsidalline OA, is the equant which controls the motion 
of the planet's orbital center O2 • This point, in turn, moves practically on the Ptolemaic 
deferent. because 

r' = 104 e1 = 312 e R:I 208·3 2 for R = 10' 

satisfy the conditions (2) and (3). 
Since we shall find (cf. p. 98) that Copernicus preserved the equant also for Mercury 

we can now say that his aim was by no means to abolish the concept of equant, but, 
exactly as his Islamic predecessors, to demonstrate that a secondary epicycle is capable 
of producing practically the same results (thanks to the smallness of the eccentricities) 
as ptolemy's equant. Though the resultant deferent is unfortunately not a circle, each 
component motion is uniform and circular. Both ash-Shatir and Copernicus considered 
this as their main achievement, even if the model had become more complicated than 
ptolemy's. 

Kepler was less philosophically prejudiced, and he not only reintroduced the Ptolemaic 
equants in the planetary theory but took the heliocentric approach seriously and hence 

1 Kepler remarked (Werke, vol. iii, p. 75) that he would not mind this construction if it only would 
make the deferent narrower, not wider, than a circle. 

2 For R = 60 e = 1 ;15 (AIm, x, 3). 
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96 On the Planetary Theory of Copernicus 

provided also the (circular) orbit of the Earth with an equant,l an improvement which 
increased the accuracy in his determinations of the positions of Mars. Ptolemy's discovery 
of the" equant" was not only never abandoned but proved of the greatest importance for 
the construction of the" oval" orbit of Mars and hence of the Kepler ellipse. 

5. The identity of the Copernican cinematic model with the Ptolemaic is obscured by 
many secondary features. Instead of using tropical longitudes, Copernicus always operates 
sidereally, with y Ari as zero point, simply because this star is the first zodiacal star listed 
in the star catalogue of the Almagest (with ). = 6 ;40 f3 = + 7 ;20). Hence all Ptolemaic 
longitudes are reduced by 6;40 and augmented by precession, which, however, is vitiated 

by a trepidation term. Furthermore the "mean Sun" (our §) in the center of the Earth's 
circular orbit is not quite the mean Sun but rotates slowly about another center which, 

finally, has a fixed distance from the real Sun. 2 The motion of S, which modifies the solar 
eccentricity and apogee, is unfortunately regulated by the same parameter which controls 
the oscillations of the true vernal point and simultaneously thE) obliquity of the ecliptic. 
The two latter motions are supposedly the consequence of a motion of the celestial poles 
along a figure-eight-curve made of two small contacting circles, the point of contact being 
the mean pole. In fact, however, this supposed motion of the polar axis does not induce 
the simple harmonic motion of the vernal point which Copernicus finally assumed (and 
which made Vieta so angry). Hence it is not at all simple to find out what the Copernican 
equivalent of a Ptolemaic coordinate should be and such a transformation is made still 
more arduous by the countless small computing errors, inaccuracies, and inconsistencies 
which mar all discussions in De Revolutionibus. Frequent shifts from sexagesimal para
meters to decimals and back again do not increase accuracy. Finally angles which have a 
simple geometric significance are moved to S or 0 (of course simply parallel) and given 
new names. Hence it is not surprising that it is not at all apparent that the Copernican 
planetary tables are the direct equivalent of the Ptolemaic ones. But it is geometrically 
clear that this must be the case since we know that the Copernican model preserves the 

~ equant of the Ptolemaic theory (cf. Fig. 7). 
In order to find the longitude}. of a planet P as seen from 0 (with respect to y Ari or to 

rOO) one needs the angle 'YJ which appears at 0 as well as at S. The position of the 'planet 
on its epicycle is defined by its "mean anomaly" oc or its "true anomaly" '" = IX + 'YJ, 

which are called "parallactic anomalies" when counted at S. The equant guarantees that 
OOPS always forms a parallelogram and hence we have the same angle (J at 0 as well as 
at P. Hence). will be given in both versions by 

}. = }.A + " + 'YJ + (J, 

of course with proper signs for 'YJ and (J. 

The tables in the Almagest (xi, 11) contain 8 columns, the first two for the arguments, 
the remaining six for functions which we denote as ca to CS. The corresponding tables of 
Copernicus (v, 33) give four functions 03 to 06 • Between these functions C and 0 there exist 
simple correspondences. Already ptolemy abolished in this Handy Tables the tabulation 

1 Incidentally, Kepler was not the first to design a solar theory with an equant. Ibn ash-Shap.r (around 
1350) assumed a secondary epicycle which carries the Sun at an angular distance 2ie from the direction 
of the apsidalline (cf. Roberts, Isis, vol. 48, p. 429, Fig. 1). This is exactly the same device used in the 
theory of Mercury for the motion of the center O2 of the planet's orbit (cf. below, p. 99, Fig. 9) and pro
duces the same result, i.e. an equant located between the observer and the center of the deferent. 

• It may be remarked that here Copernicus introduced into the solar theory exactly the same mecha
nism against which he polemicized on philosophical grounds in Ptolemy's lunar theory. 
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O. NEUGEBAUER 97 

of two separate components Ca and c4 which together give the angle 'Yj as function of ". 
Copernicus follows, of course, the same practice, thus 

'Yj(U) = ca(u) + c4(u) ".., 0s(")' 

With .x = <X + 'Yj as argument Ptolemy forms 
I 

or 

Here cst,,) is a coefficient of interpolation which increases in nearly sinusoidal fashion 
from -I at " = 0 to + I at " = ISO; cs(.x) gives the angle () when the epicycle is at mean 
distance, cs(.x) - C5(.x) at maximum distance, cs(.x) + c7(.x) at minimum distance. The 
above formulae indicate how () is found for intermediary distances. 

, , 
/ , 

\ 
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\ , 
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FIG. 7. 
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Copernicus modified this procedure by adopting a principle developed for Islamic tables, 
only to use positive corrections. Hence he finds () from 

(}(.x, u) = 05(.x) + 04(U) 06(.x) 

where 04(") increases from 0 at " = 0 to + I at" = ISO because 05(.x) = () at maximum 
distance, 05(.x) + 0s(.x) = () at minimum distance. Hence 

c6(.x) - c5(.x) ".., °5(.x) 

c,(.x) + C7(.x) ".., 06(.x). 

Table 3, excerpted from the tables for Saturn, shows how closely these relations are satis
fied. 

Obviously the Copernican tables will produce practically the same results as the Ptolemaic 
ones. Also the number of steps in computing a planetary longitude is the same in both 
systems. 
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98 On the Planetary Theory of Copernicus 

TABLE 3 

Aim. xi, 11 

I 
Revol. v, 33 

Ca + c, I ce - c. I c. + c, a. I a. I as 
30 3;6 2;42 0;19 3;6 2;42 0;19 
60 5;29 4;49 0;35 5;29 4;49 0;35 
90 6;31 5;53 0;41 6;31 5;52 0;42 

120 5;49 5;21 0;42 5;49 5;22 0;42 
150 3;24 3;13 0;26 3;24 3;13 0;26 

6. ptolemy's model for Mercury (cf. Fig. 8) assumes that the center N of the deferent 
rotates uniformly about a point M of the apsidalline whereas the center a of the epicycle 
is seen moving uniformly from an equant E which lies halfway between 0 and M. The 
resulting path of a brings the epicycle for ;e = ±120030' (or a value very close to it!) 
nearer to 0 than at the "perigee" II at;e = 180. In order to preserve these features Coper
nicus first sets out to keep the equant in its proper position between 0 and M. For this 
reason he has now to let the center as of the planet's orbit (cf. Fig. 9) rotate with a phase 
180° different from the other cases. Applying the same type of argument which we used 
before (p. 94) it can be shown that again the conditions (2) and (3) 

r'=te e1 =le=3r' (4) 

should be satisfied if not only E but also A and II should be kept in place. And indeed it is 
this relation (4) which Copernicus prescribes in Revol. v, 25, for his model of Mercury. 

l!'IG.8. 

e E 

o 

1T 

1 W. Hartner has shown that this path is nearly elliptical; cf. Vi8tas in A8tronomy, ed. A. Beer, vol. 1 
(1955), p. 109. See also Hartner's article on "Mediaeval views on cosmic dimensions" in MelangesAlexan. 
dre Koyre, vol. II, p. 268, footnote 25. 
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O. NEUGEBAUER 99 

But if one looks at the subsequent calculations one finds that Copernicus uses not (4) 
but! 

r' = 212 e1 = 736 Ptolemy: e = 500. 

It is possible to detect the reason for this change of parameters. In order to determine the 
remaining parameters of the model one could require the preservation of additional geo
centric distances of the Ptolemaic model, e.g. at quadratures or at u = ±120. It is not 
difficult to see, however, that this leads to unpleasant conditions for the motion of the 
planet with respect to the center of its orbit. Hence Copernicus abolished his original 

A 

FIG. 9. 
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procedure (without saying so) and adopted an approach which is preferable also in prin
ciple. ptolemy determined the parameters of his model from observations of maximum 
elongations, much in the same fashion as with Venus. What Copernicus now required for 
his model was that it should produce for" = 0, 180, and ± 120 the same maximum elonga
tions as ptolemy's theory. Of course, Ptolemy's rotating deferent had to be replaced 
by a variation of the radius of the planetary orbit, or, in Copernicus' terminology, the planet 
had to perform a motion of libration along the radius of its orbit between fixed limits 
r + T and r - T. For the mean radius r Copernicus took a close approximation of Ptolemy's 
epicycle radius r; then it is easy to show that the maximum elongations taken fi:om the 
Alrrutge8t for the above-mentioned values of " determine the amplitude T of libration. The 
motion of libration itself is again simple harmonic (as for the vernal point),2 supposed to 
be generated by uniform rotations in the form devised by Proclus 3 or at-Tu!?1.4 

1 For unknown reasons sometimes also 211i and 7361 respectively. 
2 Of. above, p. 96. 
3 Commentary to Euclid I, Defin. IV. Of. also trans!. Ver Eecke, p. 96, n. 4. 
• Of. P. Tannery, Recherches sur l'astronomie ancienne (Paris 1893), p. 348. Also Kennedy-Roberts, 

loco cit., p. 23If. 
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100 On the Planetary Theory of Copernicus 

Neither Ptolemy's nor Copernicus' machinery for the motion of Mercury could be con
sidered plausible representations of physical facts; Copernicus himself had speculated in 
a loose fashion about an alternative mechanism. 1 It is difficult to see how devices of this 
type ever could have been taken for more than mathematical similes of no other significance 
than to guide the computations. I realize that one is supposed to he disgusted with Osian
der's preface which he added to the De Revolutionibus (in keen anticipation of the struggle 
of the next generations) in which he, in the traditional fashion of the ancients, speaks 
about mere "hypotheses" represented by the cinematic models adopted in this work. 
It is hard for me to imagine how a careful reader could reach a different conclusion. 

7. Ptolemy's model for Mercury is obviously inspired by the mechanism which he had 
invented in order to explain for the Moon in quadrature the increased equation of center 
(cf. above, p.91). But the crank mechanism which properly enlarged the effect of the 
epicyclic anomaly also increased the lunar parallax and the Moon's apparent diameter to 
almost twice its actual value. Ptolemy kept silent about this obvious deficiency of his 
theory which accounted so nicely for the longitudes. But in late Islamic astronomy this 
defect was no longer accepted without question, and we now know that almost two centu
ries before Copernicus the device of a secondary epicycle was used by Ibn ash-Shapr. 2 

The determination of the corresponding radius is trivial 3 since one has to do nothing more 
than to make the diameter of the second epicycle so large that the maximum equation 
increases from about 5° at syzygies to about 7 ;40 at quadratures, again simply accepting 
Ptolemy's data. Copernicus, 'operating on the same premises, reached of course the same 
result as the Muslim astronomers. 4 

The new lunar model had the great advantage over Ptolemy's that it kept the parallax 
under all conditions nearly within the limits prevailing at syzygies. Copernicus confirmed 
the new parallaxes by showingS that an occultation of Aldebaran by the Moon, observed in 
Bologna in 1497, was accounted for by his parallax. If one .checks, however, Copernicus' 
computations, one finds errors in practically every step, even such obvious ones as a total 
of less than 180° for the angles of a spherical triangle. Fortunately the number of steps 
is large enough to make the total error insignificant. But the ancient lunar theory, assuming 
a fixed maximum latitude of 5°, also accepted by Copernicus, produced in the present case 
a latitude of only about -4;35, instead of -4;47. For the latitudinal parallax Copernicus 
found about -0;30 which moved the Moon down to Aldebaran, which he placed at a 
latitude of -5;10, a coordinate taken right out of Ptolemy's catalogue of stars. Had he 
checked it by observation he would have found the star at about -5;30 and his theory 
would have made the lower rim of the Moon pass almost 10 minutes above the star. Even 
worse, ptolemy's latitudinal parallax would have moved the Moon from Copernicus' 
position right down to the star, hence supporting the ancient theory against the Copernican. 
In fact it was only a wrong Copernican lunar latitude in combination with a wrong Ptole
maic stellar position which "confirmed" the (essentially correct) Copernican parallax. 

As is well known, Ptolemy's solar parallax was wrong by a factor of about 20. Since no 
direct measurement could possibly be made with the instruments of antiquity one followed 
Ii method, invented by Hipparchus, based on eclipses. Ptolemy had assumed that the Moon 
at maximum distance covers the Sun (at mean distance) exactly, both appearing under an 

1 Revol. v, 32. 
2 Cf. V. Roberts, quoted above, p. 89, note 4. 
3 Hence no "mesure de ... genie mathematique". Cf. also the very simple discussion in Revol. iv,8. 
• Roberts, lx. cit., p. 431. 
• Revol. iv, 27. 
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angle of 0;31,20°. From a careful discussion of lunar eclipses he had derived for the dia
meter of the shadow a ratio 13/5 to the diameter of the Moon at maximum distance, the 
latter being at 64;10 earth radii. 

The parameters accepted by Copernicus required some changes insofar as a common 
tangent to Moon and Sun would occur at a distance of the Moon of only 62 earth radii 
instead of Ptolemy's 64; 10. For the shadow he considered a ratio 403/150 as more "con
venient" than 13/5. Naturally one will ask: "convenient" for what ¥ And why these special 
numbers 1 It is abundantly clear that Copernicus had no eclipse observation at his disposal 
giving him new information about the diameter of the shadow cone. Not only does he not 
adduce any such evidence but he gives in iv, 18 a very sketchy summary of Ptolemy's 
method how to deduce from eclipse magnitudes data for the shadow's diameter. The nu
merical data which Copernicus mentions are round numbers chosen ad hoc and so carelessly 
that they are excluded by Copernicus' own theory. Hence the ratio 403/150 must come 
from somewhere else. Indeed, since the distance of the Moon was changed from 64;10 to 

62 Copernicus simply multiplied 13/5 by 6~~0 ~ :~ to get a "convenient" shadow. And 

the convenience of this transformation lies in the fact that this change is required to obtain 
practically the same distance for the Sun as before with ptolemy's parameters. No wonder 
that Copernicus' conveniently doctored data produced a solar distance of 1179 Earth radii 
as compared with ptolemy's 1210. Had he used his parameters without corrections he 
could have easily ended up with a considerably greater distance for the Sun than ptolemy 
had found and this would have been rather unpleasant for a heliocentric system which had 
to face the absl)nce of any fixed-star parallax. 

Having obtained the conventional order of magnitude for the solar distance Copernicus 
happily reverted to the classical ratio 13/5 for the shadow. One can hardly think of a greater 
contrast in methodology as between Copernicus and Tycho Brahe, only one generation later. 

8. Vieta, in his criticism quoted at the beginning, referred to the determination of planet
ary parameters from 3 mean and 3 true positions. Indeed all the astronomical models be
tween Apollonius and Kepler had to solve a problem of this type. Since the circularity of 
the basic motion was taken for granted three points had to be determined to characterize 

a circle. Three observations provided two time differences which furnish two angles (b1 and 

F.) of mean motions, whereas the observer recorded two angles of true motion (151 and d.). 
Then one faces the following problem: find the position of an ob3erver who sees three points 
on a circle under angular differences 151 and ~ whil~ he knows that they would appear from 
the center of mean motion under the angles 151 and 15 •. If the latter center coincides with the 
center of the circular orbit the problem has a unique solution obtainable by straightfor
ward trigonometric operations. This is the case for the Sun (where 151 and 15. are right angles 
if one observes the equinoxes and 'a solstice) and for the Moon at lunar eclipses where the 

mean anomalies provide ~ and b. at the center of the epicycle. 
This simple situation no longer holds for a model with an eccentric equant of unknown 

eccentricity. Then it is easy to see that the four above-mentioned angles alone do not 
determine the problem. For the inner planets one need not worry, because the size of their 
orbits is directly observable at maximum elongation. This does not hold, however, for the 
epicycles of the outer planets. Only their centers are in principle observable at the moments 
of opposition of the planet to the mean Sun (cf. Fig. lOa). Unfortunately the mean distance 

J"between two centers is measured at the equant E and OE = 2e is one of the unknown 
quantities one wishes to determine. 

503 



102 On the Planetary Theory of Copernicus 

The Copernican arrangement (Fig. lOb) faces exactly the same difficulty. The observa

tions give only the angle <5 between the directions S01P1 and 802P2 • But i is measured at 

M' and we do not know e1 = 8M' or r' = 1 e1 = GP.1 

A A 

\ 
'\ 

b 
FIG. 10. 

ptolemy solves his problem by an iteration process. He assumes as first approximation 
that the equant coincides with the center M of the deferent and thus returns to the mathe
matical problem familiar from the lunar theory. This leads to an approximately correct 
position of the apsidalline and an approximate eccentricity. Now one can find by how 
much (e) the observed angle <5 had been falsified because of the identification of E and M. 
Hence a second approximation can be computed with '8 and <5 + e as given angles, and so 
forth until the results become stable. Ptolemy did not compute many steps: three for Mars, 
only two each for Saturn and Jupiter. He gives, of course, no proof of convergence and is 
satisfied to show that the last obtained parameters explain the observational data. 

Copernicus admittedly did not bother to understand this iteration method which he 
simply characterizes as a "multitudo numerorum". All that he does is to repeat Ptolemy'S 
final test with the parameters of his own model, obtaining exactly the same results (as 
was to be expected from the beginning). 

A different situation arises when Copernicus sets out to repeat the determination of the 
parameters of his model on the basis of observations in his own time. As we have said 
before, he would have to face exactly the same mathematical difficulty as did Ptolemy. But 
such a systematic approach is foreign to him and hence he maintains as much as possible 
of the Ptolemaic parameters and modifies the position of the apsidalline by trial and error, 
knowing of course from contemporary astronomy how much displacement could be ex
pected. 

9. The rigid adherence to Ptolemaic methods deprived Copernicus of one advantage 
where the heliocentric approach is definitely superior to the geocentric one, i.e. in the 

1 It should be noted that the relative positions of the points S, 0, P are exactly the same in Figs. lOa 
and lOb. 
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theory of latitudes. Since the orbital planes go through the Sun, the assumption of deferent 
planes which go through the Earth produces inconvenient effects. Without eccentricities 
it would be correct to move the plane of the epicycle parallel to itself along the deferent 
at fixed inclination. In fact, however, a Ptolemaic eccentricity is the vector sum of the 
eccentricities of Earth and planet, and this vector lies neither in the ecliptic nor in the 
orbital plane. It is not difficult to see that this situation, unknown to Ptolemy, is the cause 
of the vibrations which he was forced to introduce into his theory of planetary latitudes in 
order to account for the observations. Sincethe Copernican theory is only a formal trans
formation of the Ptolemaic theory, Copernicus ends up with the same secondary vibrations 
of the orbital planes which he assumed to go through the mean Sun. As Kepler put it, 1 

Copernicus did not know how rich he was. 
It is surprising to see that it did not disturb the protagonist of a Universe in which the 

earth was only one of six planets that five of them entered in an "agreement with the center 
of the earth" 2 to nod with the frequency of the Earth's rotation. And because every 
celestial motion had to be mechanized by means of uniformly rotating circles, Copernicus 
attached to each orbital plane a perpendicular little circle inside of which rolled a second 
circle such that the orbits would move up and down in simple harmonic motion. 

10. If one reads Copernicus only superficially and with the conviction that he had abolish
ed, or at least greatly simplified, the Ptolemaic system, one will not be tempted to study the 
Almagest in any detail. Vieta, of course, still knew better. He must have been fully aware 
of the fact that there was not a single proof or mathematical procedure in the De Revolu
tionibus which did not have its exact replica in the Almagest. To Vieta as one of the leaders 
in the new trend of mathematics it must have appeared rather antiquated when Copernicus 
again and again demonstrated by numerical computation that his model agreed with 
Ptolemy's. 

Modern historians, making ample use of the advantage of hindsight, stress the revolu
tionary significance of the heliocentric system and the simplifications it had introduced. 
In fact, the actual computation of planetary positions follows exactly the ancient pattern 
and the results are the same. The Copernican solar theory is definitely a step in the wrong 
direction for the actual computation as well as for the underlying cinematic concepts. The 
cinematically elegant idea of secondary epicycles for the lunar theory and as substitute for 
the equant----as we now know, methods familiar to a school of Islamic astronomers--does 
not contribute to make the planetary phenomena easier to visualize. Had it not been for 
Tycho Brahe and Kepler, the Copernican system would have contributed to the perpetua
tion of the Ptolemaic system in a slightly more complicated form but more pleasing t.o 
philosophical minds. 

1 Werke, vol. iii, p. 141, 3. 
2 Rheticus in the Narratio Prima; text, e.g., Kepler, Werke, vol.i, p. 125, 2f.; translation in Rosen, 

Three Copernican Treati8e8 (1959), p. 183. 
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